We use cookies to ensure that we can provide you with the best experience on our website. By using our website, you are consenting to the use of cookies as set out in our policy. More Info

Anglia Components

Anglia Live

Supplier sections

Abracon LLC
Advantech
Alliance Memory
American Technical Ceramics
Analog Devices
Antenova
Arcol
Arcolectric
Avalue
Bel components
Bergquist
Binder
Bivar
Bloomice
Bolb Inc
Bourns
Boyd
Bulgin
Bussmann
C&K
Calinar
Cambion
CamdenBoss
Carclo
CEL
Ceramate
Cliff Electronic Components
Conquer
Cornell Dubilier
Cosmic
Co-Tron
Cree
Cre-Sound
CTC
CTi
Deltron
Digi International
Diptronics
EAO
Eaton Bussmann/Coiltronics
ECE
Ecliptek
Efficient Power Conversion
Efore
Ekinglux
Elettronica Rossoni
EPCOS
EPOC
ESI
Eurohm
Fischer
Fox Electronics
Haimooo
Hammond Manufacturing
Harting
Harwin
Herald
Hirose
Hirschmann
Hittite
Honeywell
Hongfa
Hope RF
Hualian Semiconductor
Hudson
Ilsi
Inalways
Invac
Ixys
JDI Europe
JNC
Kang yang
Keystone
Khatod
Kingtek
KOA
KYOCERA AVX
Laird Technologies
LEDIL
Lifud Technology
Linear Technology
LITE-ON Optoelectronics
Littelfuse
Lorlin Electronics
Lumberg
Lumileds
Magnetix
Magnetone
Marl
Mascot
Mitsubishi
Mmd
M-Pro
Mueller
Murata
MurataPS
Neutrik
Nichicon
Nover
Ohmite
OKO
Omron
Panasonic
PANJIT
Phoenix Contact
Pickering
Piher
Polymer Optics
Quay RF
Renata
RF360
ROHM
Roxburgh
Samsung
Schurter
Sensirion
Shindengen
SIMCom
Solomon Systech
STMicroelectronics
Studiomate
Taicom
Taiwan Semiconductor
Taiway
Taoglas
TDK
Tdk Invensense
Telit Cinterion
Tianbo
Titan-Opto
Tokyo Parts
Toshiba
Varta
Vero Technologies
Vigortronix
Walsin
Warth
WIMA
Winbond
Winslow Adaptics
Introducing the OMRON G9KC high power, 4 pole compact relay with 40A switching capability and ultra-low contact resistance, samples available from Anglia
The G9KC relay from OMRON is a high-capacity, DC power relay designed for demanding industrial, electric vehicle charging and energy management applications. It excels in switching and controlling large direct current loads.

Rate this page

You can now follow us on Blogger, Facebook, LinkedIn, Twitter, WordPress, Live Journal or You Tube by clicking on the logos below.

Blogger Facebook Google+ Linkedin Twitter WordPress You Tube

Anglia delivers by

FedEx
Recognised as the UK’s number one for reliability, flexibility and customer service.

The industry's first AC/DC converter control IC for SiC drive from ROHM

ROHM has recently announced the development of an AC/DC converter control IC designed specifically for SiC MOSFET drive in industrial equipment such as servers and other large power applications.

The BD7682FJ-LB allows easy implementation of SiC-MOSFETs in AC/DC converters. AC/DC converter design has proved challenging when using discrete configurations due to the large number of components required. In contrast, ROHM's latest product provides a highly integrated solution and creates new standards for energy savings and miniaturization while supporting the adoption of SiC power semiconductors that provide breakthrough levels of efficiency and performance.

Compared to silicon MOSFETs used in conventional AC/DC converters, SiC MOSFETs help improve AC/DC converter efficiency by up to 6%. Furthermore, components used for heat dissipation are not required (in 50W Class power supplies), leading to greater compactness. The BD7682FJ-LB also includes multiple protection functions that enable support for high voltages up to 690VAC, making them ideal for general industrial equipment while improving reliability.

In recent years there has been an increasing trend to conserve energy in all areas, including in high voltage industrial equipment applications. To achieve these targets it is necessary to adopt advanced power semiconductors and power supply ICs. Among these, SiC power semiconductors are expected to gain ground over silicon solutions due to their higher voltage capability, greater energy savings, and more compact form factor.

However, until now there has not been a control IC that can sufficiently draw out the performance of SiC MOSFETs, particularly in AC/DC converter systems. As a result designers are faced with numerous problems related to power consumption and stability in a variety of high power applications.

To meet these needs, ROHM utilizes market-proven analog technology with SiC power semiconductor expertise to develop the industry's first AC/DC converter controller specialized for driving SiC MOSFETs. And going forward ROHM will continue to pioneer industry-leading solutions, including the development of new AC/DC converter control ICs with integrated SiC MOSFET.

Key Features

1 - Maximizes SiC MOSFET performance for breakthrough energy savings
The BD7682FJ-LB integrates a gate drive circuit optimized for SiC MOSFET drive by combining analog design technology with SiC power semiconductor development expertise. In addition, a quasi-resonant system delivers lower noise and higher efficiency vs conventional PWM methods, making it possible to maximize the performance of SiC MOSFETs used in AC/DC converters, resulting in significant power savings.

2 - SiC MOSFET contributes to unmatched miniaturization
Unlike with conventional Si MOSFETs, adopting SiC MOSFETs (which feature superior performance at high temperatures) in AC/DC converters eliminates the need for components used for heat dissipation, contributing to smaller, lighter AC/DC converter designs. Support for higher switching frequencies (i.e. 120kHz) is also ensured, expanding applicability while improving efficiency and lowering magnetic component costs (such as inductors).

3 - Multiple protection circuits support high voltage operation up to 690VAC
Multiple protection circuits enable high voltage operation in AC/DC converters up to 690VAC - ideal for general 400VAC industrial applications. And in addition to overvoltage protection for the supply voltage pin and a brown in/out (undervoltage) countermeasure for the input voltage pin, overcurrent and secondary overvoltage protection functions are included, ensuring continuous operation in industrial equipment while improving reliability considerably.

SiC MOSFET Advantages
SiC MOSFETs provide several advantages over Si MOSFETs in the high voltage region, including lower switching and conduction losses, high power compatibility, and increased resistance to temperature changes. Leveraging these benefits makes it possible to improve power conversion efficiency, miniaturize components for heat dissipation, increase operating frequency to support smaller coils, and more, resulting in increased power savings, lower component count, and smaller mounting area.


Click here for more information or buy from Anglia Live.

 

For more information, or details on the full range of Rohm products available from Anglia, please email info@anglia.com

Back to product news

This news article was originally published in September 2015.

Anglia Sitemap

LinkedIn You Tube
Copyright © 1995-2025 Anglia Components Plc.
Please read our Privacy & Cookie Policy in conjunction with the Terms and Conditions and Terms of Use of this Website.
S1306-1577-WB01 (10.22.198.65)
19/10/17