We use cookies to ensure that we can provide you with the best experience on our website. By using our website, you are consenting to the use of cookies as set out in our policy. More Info

Anglia Components

Anglia Live

Supplier sections

Abracon LLC
Advantech
Alliance Memory
American Technical Ceramics
Analog Devices
Antenova
Arcol
Arcolectric
Avalue
Bel components
Bergquist
Binder
Bivar
Bloomice
Bolb Inc
Bourns
Boyd
Bulgin
Bussmann
C&K
Calinar
Cambion
CamdenBoss
Carclo
CEL
Ceramate
Cliff Electronic Components
Conquer
Cornell Dubilier
Cosmic
Co-Tron
Cree
Cre-Sound
CTC
CTi
Deltron
Digi International
Diptronics
EAO
Eaton Bussmann/Coiltronics
ECE
Ecliptek
Efficient Power Conversion
Efore
Ekinglux
Elettronica Rossoni
EPCOS
EPOC
ESI
Eurohm
Fischer
Fox Electronics
Haimooo
Hammond Manufacturing
Harting
Harwin
Herald
Hirose
Hirschmann
Hittite
Honeywell
Hongfa
Hope RF
Hualian Semiconductor
Hudson
Ilsi
Inalways
Invac
Ixys
JDI Europe
JNC
Kang yang
Keystone
Khatod
Kingtek
KOA
KYOCERA AVX
Laird Technologies
LEDIL
Lifud Technology
Linear Technology
LITE-ON Optoelectronics
Littelfuse
Lorlin Electronics
Lumberg
Lumileds
Magnetix
Magnetone
Marl
Mascot
Mitsubishi
Mmd
M-Pro
Mueller
Murata
MurataPS
Neutrik
Nichicon
Nover
Ohmite
OKO
Omron
Panasonic
PANJIT
Phoenix Contact
Pickering
Piher
Polymer Optics
Quay RF
Renata
RF360
ROHM
Roxburgh
Samsung
Schurter
Sensirion
Shindengen
SIMCom
Solomon Systech
STMicroelectronics
Studiomate
Taicom
Taiwan Semiconductor
Taiway
Taoglas
TDK
Tdk Invensense
Telit Cinterion
Tianbo
Titan-Opto
Tokyo Parts
Toshiba
Varta
Vero Technologies
Vigortronix
Walsin
Warth
WIMA
Winbond
Winslow Adaptics
Eaton Bussmann Multilayer Ferrite Beads feature high impedance offering superior high-frequency noise reduction, samples available from Anglia.
Eaton Bussmann multilayer ferrite beads (MFB) offer a wide range of high-impedance performance across a wide range of high frequency applications in industrial and automotive applications.

Rate this page

You can now follow us on Blogger, Facebook, LinkedIn, Twitter, WordPress, Live Journal or You Tube by clicking on the logos below.

Blogger Facebook Google+ Linkedin Twitter WordPress You Tube

Anglia delivers by

FedEx
Recognised as the UK’s number one for reliability, flexibility and customer service.

Introducing the ABP Series of High Accuracy Digital or Analog Output Pressure Sensors from Honeywell

Honeywell have introduced a new range of Basic Board Mount Pressure Sensors, ABP Series. These new cost-effective analog and digital sensors are amplified and compensated, provide either I2C or SPI output, and are the smallest of its kind in the industry.

The Basic Amplified ABP Series is a piezo resistive silicon pressure sensor offering a ratiometric analog or digital output for reading pressure over the specified full scale pressure span and temperature range.

The ABP Series is fully calibrated and temperature compensated for sensor offset, sensitivity, temperature effects and accuracy errors (which include non-linearity, repeatability and hysteresis) using an on-board Application Specific Integrated Circuit (ASIC).

Calibrated output values for pressure are updated at approximately 1 kHz for analog and 2 kHz for digital, the ABP Series is calibrated over the temperature range of 0 °C to 50 °C [32 °F to 122 °F]. The ABP Series is characterized for operation from a single power supply of either 3.3 Vdc or 5.0 Vdc and the sensors measure gage and differential pressures.

The Basic Amplified pressure sensors are intended for use with non-corrosive, non-ionic gases, such as air and other dry gases. The sensors can also be specified with the following options which extend the performance to non-corrosive liquids.

 

For more information, or details on the full range of Honeywell products available from Anglia, please email info@anglia.com

Back to product news

This news article was originally published in February 2017.

Anglia Sitemap

LinkedIn You Tube
Copyright © 1995-2025 Anglia Components Plc.
Please read our Privacy & Cookie Policy in conjunction with the Terms and Conditions and Terms of Use of this Website.
S1306-1577-WB02 (10.22.198.135)
19/10/17